Mostrar el registro sencillo del ítem

dc.contributor.advisorBlair, Matthew
dc.contributor.authorFranco Herrera, Natalia
dc.date.accessioned2024-04-05T16:55:18Z
dc.date.available2024-04-05T16:55:18Z
dc.date.issued2011-07
dc.identifier.urihttps://bdigital.uniquindio.edu.co/handle/001/6768
dc.description.abstractEl mapa obtenido presentó una longitud total de 2439,7cM, con una distancia promedio entre marcadores de 4,9cM. El GL más largo fue el B02 con 342,6cM, mientras que el B05 fue el más corto con 143,3cM. Para incrementar el número de marcadores, se diseñaron marcadores basados en genes de nodulación, flanqueando regiones intrónicas. En total se lograron diseñar 204 marcadores, pero solamente se lograron mapear 12 (dos en DB y 10 en DG). Entre los marcadores anclados al mapa DG, se encontraron los marcadores basados en los genes NIN y LHK1. El primero es un regulador en la etapa de infección controla la curvación de los pelos de la raíz; el otro es un receptor quinasa de citoquinina (implicado en la organogénesis de nódulos de la corteza). Respecto a la búsqueda de SNPs, se lograron reportar 343, de los cuales 150 fueron localizados entre los genotipos DOR364 y BAT477 y 193 entre DOR364 y G19833. En siete de las 44 secuencias analizadas no se encontraron SNPs. Entre los genotipos DOR364 y BAT477 las mutaciones tipo transversión fueron más abundantes (67,4%) que las transiciones (32,6%) y para DOR364 y G19833, ambos tipos de mutaciones se presentaron casi en iguales proporciones (50,3% de transiciones y 49,7% de transversiones).spa
dc.description.tableofcontents1.Introducción 14-- 2. Materiales y métodos 41-- 3. Resultados 49-- 4. Discusión 49--5. Conclusiones 75-- 6. Bibliografía --77spa
dc.format.extent122 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad del Quindío Centro Internacional de Agricultura Tropical (CIAT)spa
dc.rightsDerechos reservados Universidad del Quindíoeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleSaturación del Mapa Genético de una población Intra-Acervo de Fríjol (Phaseolus Vulgaris L.) empleando Marcadores Moleculares tipo SSR y SSCPspa
dc.typeTrabajo de grado - Pregradospa
dcterms.audienceEstudiantes y Docentes Universidad del Quindíospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalPhaseolus vulgaris L.spa
dc.subject.proposalMapeo genéticospa
dc.subject.proposalSSRspa
dc.subject.proposalSSCPspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/draftspa
dc.relation.referencesAHN, S., TANKSLEY, S.D. 1993. Comparative linkage maps of the rice and maize genomes. Proc. Natl. Acad. Sci. 90 (17): 7980-7984.spa
dc.relation.referencesBEEBE, S.E., OCHOA, I., SKROCH, P., NIENHHUIS, J., TIVANG, J. 1995. Genetic diversity among common bean breeding lines developed for Central America. Crop Sci. 35 (4): 1178-1183.spa
dc.relation.referencesBELLUCCI, E., GORETTI, D., BITTOCCHI, E., ROSSI, M., NANNI, L., ATTENE, G., PAPA, R. 2010. Nucleotide diversity analysis in wild and domesticated Phaseolus vulgaris L. from Mesoamerica. ). Vth International Congress on Legume Genetics and Genomicspa
dc.relation.referencesBLAIR, M.W., PEDRAZA, F., BUENDÍA, H.F., GAITÁN-SOLÍS, E., BEEBE, S.E., GEPTS, P., & TOHME, J. 2003. Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theorical and Applied Genetics. 107: 1362-1374.spa
dc.relation.referencesBLAIR, M. W., GIRALDO, M. C., BUENDÍA, H. F., TOVAR, E., DUQUE, M. C., BEEBE, S. E. 2006b. Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). TAG. Theoretical and applied genetics. 113: 100-109.spa
dc.relation.referencesBLAIR, M.W., GALEANO, C.H., TOVAR, E., MUÑOZ TORRES, M.C., VELASCO CASTRILÓN, A., BEEBE, S.E., RAO, I. M. 2010a. Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant susceptible common bean (Phaseolus vulgaris L.) cross. Mol Breeding.1-18spa
dc.relation.referencesBUSO, G.S.C., AMARAL, Z.P.S., BRONDANI, R.P.V., FERREIRA, M.E. 2006. Microsatellite markers for the common bean Phaseolus vulgaris. Molecular Ecology Notes. 6: 252-254spa
dc.relation.referencesCAIXETA, E., BORÉM, A., KELLY, J. 2005. Development of microsatellie markers based on BAC common bean clones. Crop Breeding and Applied Biotecnology. 5: 125-133spa
dc.relation.referencesCÓRDOBA, J.M. 2009. Desarrollo de marcadores microsatélites a partir de las secuencias BAC-END de fríjol común (Phaseolus vulgaris L.) y 81 ubicación en los mapas genético y físico. Trabajo de grado. Universidad Nacional de Colombia, Facultad De Agronomia, Escuela de Posgrados. Bogotá D.C.spa
dc.relation.referencesCÓRDOBA, J.M., CHAVARRO, C., SCHLUETER, J.A., JACKSON, S.A., BLAIR, M.W. 2010b. Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics. 11 (436): 436.spa
dc.relation.referencesDEBOUCK, D.G. 1999. Diversity in Phaseolus species in relation on the common bean. En: Frei, A., Blair, M.W., Cardona, C., Beebe, S.E., Hu, H., Dorn, S. 2005. QTL Mapping of Resistance to Thrips palmi Karny in Common Bean (Genomics, Molecular Genetics & Biotechnology). Crop Science. 45: 379-387.spa
dc.relation.referencesDE CAMPOS, T., RODRIGUES OBLESSUC, P., SFORÇA, D. A., KUPPER CARDOSO, J.M., MORO BARONI, R., BARBOSA DE SOUSA, A.C., MORAIS CARBONELL, S. A., CHIORATTO, A.F., FRANCO GARCIA, A.A., BENCHIMOL RUBIANO, L., PEREIRA DE SOUZA, A. 2011. Inheritance of growth habit detected by genetic linkage analysis using microsatellites in the common bean (Phaseolus vulgaris L.). Mol Breeding. 27 (4): 549-560.spa
dc.relation.referencesDOUABIN-GICQUEL, V., SORIANO, N., FERRAN, H., WOJCIK, F., PALIERNE, E., TAMIN, S., JOVELIN, T., MCKEI, A.T., LE GALL, J,Y., DAVID, V., MOSSER, J. (2001). Identification of 96 single nucleotide polymorphisms in eight genes involved in iron metabolism: efficiency of bioinformatic extraction compared with a systematic sequencing approach. En: Soleimani, V. D., Baum, B. R., Johnson, D. A. (2003). Efficient Validation of Single Nucleotide Polymorphisms in Plants by Allele-Specific PCR, With an Example From Barley. Plant Molecular Biology. 21: 281-288.spa
dc.relation.referencesFERREIRA, A., DA SILVA, M.F., DA COSTA E SILVA L., CRUZ, C.D., 2006. Estimating the effects of population size and type on the accuracy of genetic maps. Genet. Mol. Biol. 29 (1): 187-192.spa
dc.relation.referencesFREYRE, R., SKROCH, P. W., GEFFROY, V., ADAM-BLONDON, A-F., SHIRMOHAMADALI, A, JOHNSON, W. C., LLACA, V., NODARI, R. O., PEREIRA, P. A., TSAI, S.-M., TOHME, J., DRON, M. NIENHUIS, J., VALLEJOS, C. E., GEPTS, P. 1998. Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. TAG Theoretical and Applied Genetics. 97: 847-856.spa
dc.relation.referencesGALEANO, C. H., FERNÁNDEZ, A. C., GÓMEZ, M., BLAIR, M. W. 2009a. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC genomics. 10: 629-643spa
dc.relation.referencesGARCIA, R.A.V., RANGEL, P.M., BRONDANI, C., MARTINS, W.S., MELO, L.C., CARNEIRO, M. S., BORBA, T,C.O., BRONDANI, R.P.V. 2011. The characterization of a new set of EST-derived simple sequence repeat (SSR) markers as a resource for the genetic analysis of Phaseolus vulgaris. BMC Genetics. 12 (41).spa
dc.relation.referencesGEPTS, P. & DEBOUCK, D., 1991. Origen, domestication, and evolution of the common bean (Phaseolus vulgaris). Research for crop Improvement. van Shoonhoven, A., Voysest, O. CIAT. CAB International. 7-53.spa
dc.relation.referencesGEPTS, P., BEAVIS, W.D., BRUMMER, E.C., SHOEMAKER, R.C., STALKER, H.T., WEEDEN, N.F., YOUNG, N.D. 2005. Legumes as a model plant family. Genomics for food and feed. Report of the Cross-legume Advances through Genomics conference. Plant Physiology.137: 1228-1235.spa
dc.relation.referencesGRISI, M. C. M., BLAIR, M. W., GEPTS, P., BRONDANI, C., PEREIRA, P.A.A., BRONDANI, P.V. 2007. Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 x Jalo EEP558. Genetics and Molecular Research. 6 (3): 391-706.spa
dc.relation.referencesHANAI, L. R., DE CAMPOS, T., ARANHA, L.E., BENCHIMOL, L.L., PEREIRA, A., MELOTTO, M., MORAES, S.A., CHIORATTO, A.F., CONSOLI, L., FORMIGHIERI, E.F., VINÍCIUS, M., MUI, S., CARNEIRO, M.L. 2007. Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. Biosystems, 50 (3): 266-77.spa
dc.relation.referencesHANAI, L. R., SANTINI, L., CAMARGO, L. E. A., FUNGARO, M. H. P., GEPTS, P., TSAI, S. M., CARNEIRO, M.L. 2009. Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Molecular. 25: 25-45.spa
dc.relation.referencesHIRSCH, S., KIM, J., MUÑOZ, A., HECKMANN, A.B., DOWNIE, J.A., OLDROYD, G.E. 2009. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell. 21: 545-557.spa
dc.relation.referencesHOOVER, T.R., ROBERTSON, A.D., CERNY, R.L., HAYES, R.N., IMPERIAL, J., SHAH, V.K., LUDDEN, P.W. 1987. Identification of the V factor needed for synthesis of the iron–molybdenum cofactor of nitrogenase as homocitrate. En: Kouchi, H., Imaizumi-anraku, H., Hayashi, M., Hakoyama, T., Nakagawa, T., Umehara, Y., Suganuma, Norio, S., Masayoshi, K. 2010. How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground Special Issue – Mini Review. Plant Cell. 51(9): 1381-1397.spa
dc.relation.referencesIMAIZUMI-ANRAKU, H., TAKEDA, N., CHARPENTIER, M., PERRY, J., MIWA, H., UMEHARA, Y. KOUCHI, H., MURAKAMI, Y., MULDER, L., VICKERS, K., PIKE, J., DOWNIE, J.A., WANG, T., SATO, S., ASAMIZU, E., TABATA, S., YOSHIKAWA, M., MUROOKA, Y., WU, G.J., KAWAGUCHI, M., KAWASAKI, S., PARNISKE, M., HAYASHI, M. 2005. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. En: Kouchi, H., Imaizumi-anraku, H., Hayashi, M., Hakoyama, T., Nakagawa, T., Umehara, Y., Suganuma, Norio, S., Masayoshi, K. 2010. How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground Special Issue – Mini Review. Plant Cell. 51 (9): 1381-1397.spa
dc.relation.referencesKAPLAN, L., LYNCH, T. F., SMITH, C. E., Jr. 1973. Early cultivated beans (Phaseolus vulgaris) from an intennontane Peruvian valley. En: Gepts, P., Debouck, D. 1991. Origen, domestication, and evolution of the common bean (Phaseolus vulgaris). Research for crop Improvement. van Shoonhoven, A. & Voysest, O. CIAT. CAB International. 7-53.spa
dc.relation.referencesKOUCHI, H., IMAIZUMI-ANRAKU, H., HAYASHI, M., HAKOYAMA, T., NAKAGAWA, T., UMEHARA, Y., SUGANUMA, NORIO, S., MASAYOSHI, K. 2010. How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground Special Issue–Mini Review. Plant Cell. 51 (9): 1381-1397spa
dc.relation.referencesLAVI, U., AKKAYA, M.S., BHAGWAT, A.A., LAHAV, E., CREGAN, P.B.1994. Generation of simple sequence repeat DNA markers in avocado (Persea amaricana M.). En: Yu, K., Park, J., Poysa, V., Gepts, P. 2000. Integration of Simple Sequence Repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). The Journal of Heredity. 91 (6): 429-434.spa
dc.relation.referencesLEFEBVRE, B., TIMMERS, T., MBENGUE, M., MOREAU, S., HERVE, C., TOTH, K. 2010. A remorin protein interacts with symbiotic receptors and regulates bacterial infection. En: Kouchi, H., Imaizumi-anraku, H., Hayashi, M., Hakoyama, T., Nakagawa, T., Umehara, Y., Suganuma, Norio, S., Masayoshi, K. 2010. How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground Special Issue – Mini Review. Plant Cell. 51 (9): 1381-1397.spa
dc.relation.referencesMARSH, J. F., RAKOCEVIC, A., MITRA, R. M., BROCARD, L., SUN, J., ESCHSTRUTH, A., LONG, S.R., SCHULTZE, M., RATET, P., OLDROYD, G.D.E. 2007. Medicago truncatula NIN is essential for rhizobial independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant physiology. 144 (1): 324-335.spa
dc.relation.referencesOKA-KIRA, E., TATENO, K., MIURA, K., HAGA, T., HAYASHI, M., HARADA, K. 2005. klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and fl oral induction. En: Kouchi, H., Imaizumi-anraku, H., Hayashi, M., Hakoyama, T., Nakagawa, T., Umehara, Y., Suganuma, Norio, S., Masayoshi, K. 2010. How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground Special Issue – Mini Review. Plant Cell. 51 (9): 1381-1397.spa
dc.relation.referencesOKAMOTO, S., OHNISHI, E., SATO, S., TAKAHASHI, H., NAKAZONO, M., TABATA, S., 2009. Nod factor/nitrate-induced CLE genes that drive HAR1- mediated systemic regulation of nodulation. En: Kouchi, H., Imaizumi anraku, H., Hayashi, M., Hakoyama, T., Nakagawa, T., Umehara, Y., Suganuma, Norio, S., Masayoshi, K. 2010. How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground Special Issue – Mini Review. Plant Cell. 51 (9): 1381-1397spa
dc.relation.referencesORITA, M., IWAHANA, H., KANAZAWA, H., HAYASHI, K., SEKIYA, T. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. En: Galeano, C. H., Fernández, A. C., Gómez, M., Blair, M. W. 2009a. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC genomics. 10: 629-643.spa
dc.relation.referencesPATERSON, A.H., BOWERS, J.E., BUROW, M.D., DRAYE, X., ELSIK, C.G., JIANG, C.X., KATSAR, C.S., LAN, T.H., LIN, Y.R., MING. R., WRIGHT, R.J. 2000. Comparative genomics of plant chromosomes. Plant Cell. 12: 1523-1540.spa
dc.relation.referencesPLOMION, C., O’MALLEY, D.M., DUREL, C.E. 1995. Genomic analysis in maritime pine (Pinus pinaster): comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. En: Semagn, K., Ndjiondjop, A., Bjørnstad, A. 2006. Principles, requirements and prospects of genetic mapping in plants. African Journal of Biotechnology. 5 (25): 2569- 2587.spa
dc.relation.referencesREMANS, R., BEEBE, S., BLAIR, M., MANRIQUE, G., TOVAR, E., RAO, I., CROONENBORGHS, A., TORRES-GUTIERREZ, R., EL-HOWEITY, M., MICHIELS, J., VANDERLEYDEN, J. 2007. Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant and Soil. 302 (1): 149-161.spa
dc.relation.referencesSPRENT, J.I. 2007. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. En: Kouchi, H., Imaizumi-anraku, H., Hayashi, M., Hakoyama, T., Nakagawa, T., Umehara, Y., Suganuma, Norio, S., Masayoshi, K. 2010. How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground Special Issue – Mini Review. Plant Cell. 51 (9): 1381-1397.spa
dc.relation.referencesWITTRNACK, L. 1888a. Die Heimat der Bohnen und der Kürbisse. En: Gepts, P., Debouck, D. 1991. Origen, domestication, and evolution of the common bean (Phaseolus vulgaris). Research for crop Improvement. van Shoonhoven, A. & Voysest, O. CIAT. CAB International. 7-13spa
dc.relation.referencesYAISH, M.W.F & PÉREZ DE LA VEGA, M. 2003. Isolation of (GA)n Microsatellite Sequences and Description of a Predicted MADS-box Sequence Isolated from Common Bean (Phaseolus vulgaris L.). Genetics and Molecular Biology. 26 (3): 337-342.spa
dc.relation.referencesYANO , K. , YOSHIDA , S. , MULLER , J. , SINGH , S. , BANBA , M. , VICKERS , K. 2008. CYCLOPS, a mediator of symbiotic intracellular accommodation. En: Kouchi, H., Imaizumi-anraku, H., Hayashi, M., Hakoyama, T., Nakagawa, T., Umehara, Y., Suganuma, Norio, S., Masayoshi, K. 2010. How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground Special Issue – Mini Review. Plant Cell. 51 (9): 1381-1397.spa
dc.relation.referencesZHU, H., CHEN, T., ZHU, M., FANG, Q., KANG, H., HONG, Z. 2008. A novel ARID DNA-binding protein interacts with SymRK and is expressed during early nodule development in Lotus japonicus. Plant Physiol. 148: 337-347.spa
dc.contributor.corporatenameUniversidad del Quindíospa
dc.description.degreelevelPregradospa
dc.description.degreenameBiólogospa
dc.identifier.instnameUniversidad del Quindiospa
dc.identifier.reponameRepositorio Institucionalspa
dc.identifier.repourlhttps://bdigital.uniquindio.edu.cospa
dc.publisher.facultyFacultad de Ciencias Básicas y Tecnologíasspa
dc.publisher.placeArmenia-Quindíospa
dc.publisher.programCiencias Básicas y Tecnologías - Biologíaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos reservados Universidad del Quindío
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos reservados Universidad del Quindío